LOYOLA C	OLLEGE (AUTONO	MOUS), CHENNAI – 600 034							
B.C	Com. DEGREE EXAM	INATION – COMMERCE							
SECOND SEMESTER – APRIL 2014									
BC 2104 - BUSINESS STATISTICS (SHIFT - II REGULAR)									
Date : 07/04/2014 Time : 09:00-12:00	Dept. No.	Max. : 100 Marks							

Answer ALL questions.

SECTION A

(10 x 2 = 20 marks)

- 1. What are the measures of central tendency
- 2. Define Quartile Deviation.
- 3. Define skewness.
- 4. The mean of 200 items is 60 totals on it were discovered that 182 were wrongly taken as 82, find the correct mean.
- 5. If sum and difference of two quartiles are 22 and 8 respectively. Find the coefficient of skewness when the median is 10.5.
- 6. What are the types of Correlation?
- 7. What are regression equations?
- 8. What is meant by Time Series?
- 9. What is meant by balanced transportation problem?
- 10. Explain two person zero sum game.

SECTION B

Answer any FOUR questions

11. Calculate the geometric mean for the following data:

X	15	13	14	16	18	20
f	9	4	10	7	6	12

12. The A.M. calculated from the following frequency distribution is known to be 32. Find the missing frequency.

Marks	20	25	30	35	40	45
frequency	13	2	8	6	?	4

13. Calculate the Mean Deviation about the mean for the following data:

x	2	3	4	5	6	7
f	1	5	8	4	2	1

- 14. The first four moments of a distribution about the value 5 are 2, 20, 40 and 50. Obtain the mean, variance, β_1 and β_2 .
- 15 Find the quartile deviation for the following distribution

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
Frequency	8	20	25	30	12	5

 $(4X \ 10 = 40 \ Marks)$

17		1 1	1 (1		1.0					C	1	1 0	4 6 1	, ·
10	b. Calculate the tre	end valu	ies by t	he meth	od of m	noving a	iverag	es assu	ming a	four - y	early cy	cle, foi	the fol	lowing
aa	ta.	1001	1000	1002	1004	1005	100/	1007	1000	1000	2000	2001	2002	2002
	Year	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
	Rice production	42	45	44	46	47	49	54	48	50	52	56	53	49
17	7. Use the graphica Max Subj 22 3x -	1 method finite 2 ject to c $x + y \le + 3y \le y \le 2$ $x, y \ge 0$	$ \begin{array}{rcl} \text{bd to sol} \\ \text{Z} &= & 6 \\ \text{constrain} \\ 390 \\ 810 \\ 200 \\ 0 \end{array} $	lve the $x + 4y$ nts,	followir	ng LPP.								
					S	ECTI	ON (С			(2 X	X 20 =	40 Ma	arks)

Answer any TWO questions

18. a) From the following data find mean, median and mode. Verify the empirical relation.

Marks	10 - 20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No.of students	22	27	25	36	30	24	26	20	18

(10)

18. b) The mean and standard deviation of 200 items are found to be 60 and 20 respectively. If at the time of calculations two items were wrongly taken as 3 and 67 instead of 13 and 17 find the correct mean and standard deviation. What is correct coefficient of variation? (10)

19. Calculate skewness and kurtosis for the following distribution and interpret them.

Marks	0-10	10-20	20-30	30-40	40-50	50-60	(20)
Frequency	5	20	15	45	10	5	

20. a) A sample of 12 fathers and their eldest sons gave the following data about their weight in kg. Find their rank correlation coefficient.

Father	78	80	82	79	80	84	85	83	82	80	86	88
Son	70	74	80	85	82	86	88	86	71	74	83	73

20. b) Determine the <u>Seasonal Indices for the following using</u> the method of simple averages:

Quarter Year	Ι	Π	III	IV
2002	30	50	70	80
2003	40	57	54	58
2004	92	80	87	82
2005	100	78	20	30

(10)

21.(a) Find the initial basic feasible solution by using Vogel's Approximation Method for the following Transportation problem: (10)

	D_1	D_2	D_3	D_4	D_5	Availability
A_1	40	36	26	38	30	160
A ₂	38	28	34	34	198	280
A ₃	36	38	24	28	30	240
Demand	160	160	200	120	240	

(10)

21.(b)) Solve the following game by using Graphical method:

Player A $a_1 \ a_2 \ a_3 \ a_4$ $b_1 \left(\begin{array}{cccc} -2 & 4 & 2 & -4 \\ & & & \\ \end{array} \right)$ Player B $b_2 \left(\begin{array}{cccc} 3 & -5 & -2 & 6 \end{array} \right)$

(10)
